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Abstract

Model coupling in general is necessary but complicated. Scientists develop and im-
prove conceptual models to represent physical processes occurring in nature. The
next step is to translate these concepts into a mathematical model and finally into a
computer model. Problems may appear if the knowledge, encapsulated in a computer5

model and software program is needed for another purpose. In integrated water man-
agement this is often the case when connections between hydrological, hydraulic or
ecological models are required. Coupling is difficult for many reasons, related to data
formats, compatibility of scales, ability to modify source codes, etc. Hence, there is a
need for an efficient and cost effective approach to model-coupling. One solution for10

model coupling is the use of Artificial Neural Networks (ANNs). The ANN can be used
as a fast and effective model simulator which can connect different models. In this
paper ANNs are used to couple four different models: a rainfall runoff model, a river
channel routing model, an estuarine salt intrusion model, and an ecological model.
The coupling as such has proven to be feasible and efficient. However the salt intru-15

sion model appeared difficult to model accurately in an ANN. The ANN has difficulty to
represent both short term (tidal) and long term (hydrological) processes.

1 Introduction

Water management influences many aspects of our modern life and has many inter-
disciplinary fields. Water management deals not only with traditional tasks like safety20

and drainage, but also with our high living standards, health and environment. This
results in the need for integrated computing and inter-disciplinary relations. Examples
of hydrological models are rainfall-runoff models, free surface flow models and ground-
water models. In these fields integrated models already exist, for example integration
of groundwater and surface flow models, water quality and quantity models. Another25

example is integration of water quality in urban waters and waste water treatments.
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Other fields related to water management are biological and ecological models. Model
coupling is necessary to answer complex questions.

Integration of different models is intensive in time and costs. Segmented software
development is most successful. Conquer and divide is a common way to solve com-
plex problems. The negative side is that a large amount of energy is necessary to5

integrate two different types of computer models. From a software point of view inte-
gration faces difficulties with import/export tools, data formats and software versions.
A real online time connection tends toward hybrid systems. To build online connec-
tions or a hybrid system serious integration is needed. This is only cost effective if
it is used intensively. Another possibility is making components that can be plugged10

into one central framework. Many initiatives have been launched. One of the prob-
lems is that all stakeholders and future users must adopt and consequently implement
one standard. This for example requires exact definition of all interfaces and results in
less flexibility. Furthermore there are commercial and practical problems like product
support, source update and legal issues.15

On the one hand water management requires answers from different disciplines and
on the other hand it is difficult to connect computer models to one another. This re-
search investigate the ability of ANNs to set up quick connections between hydrological
computer models. With ANNs it is possible to make connections more easily without
adjustments to software code or connections to a framework.20

This methodology uses ANNs. The ANN is used as a fast simulator that operates
as an interface between different computer models. The ANN simulates the output
of the computer model. In the training period the ANN learns the model’s behavior
based on input and output. The only restriction is that the model or network does not
change. In most situations coupling of a model is only interesting if the model is already25

calibrated and the design and building has finished. In this research, the focus is on
four hydrological models. These models are described in the next section.
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2 Model description

2.1 ANNs

The basic elements of ANNs are neurons that are connected by transfer functions in
layers and a network. In mathematical terms a neuron k can be described by writing
the following pair of equations (Haykin, 1999):5

uk =
m∑
j=1

wkjxj (1)

yk = ϕ (uk + bk) (2)

where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are the synaptic weights
of neuron k; uk is the linear combiner output due to the input signals; bk is the bias and
phi (·) is the activation function; and yk is the output signal of the neuron. The sigmoid10

transfer function is the most common form of activation used:

ϕ (v)=
1

1 + exp (−av)
(3)

A few rules of thumb are available to design an ANN for hydrological modelling
(Zijderveld, 2003; Hagan et al., 1996). The ANNs have to be trained to calculate the
values of the synaptic weights. A measured or observed data set is necessary with15

known input and corresponding output values.

2.2 HBV rainfall-runoff model

For the rainfall-runoff model a lumped model of the Alzette Basin, Luxembourg is used
(Fenicia et al., 2006). Many researchers have shown it is possible to simulate a HBV
model with an ANN (Vos and Rientjes, 2005; Minns and Hall, 1996). Input is rainfall (P )20

and the potential evaporation (Ep). The output is the downstream discharge (Q). The

size of the catchment area is 31 km2.
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2.3 River model in 1D-channel flow

For river flow, Duflow modelling software is used. There are several publications on
simulating hydraulic flow, e.g. Bobovic and Abbott (1997); Dibike (2002); Price et al.
(1998); Shrestha et al. (2005). Duflow is based on the one-dimensional partial differ-
ential equations that describes non-stationary flow in open channels. These equations5

which are the mathematical translation of the laws of conservation of mass and mo-
mentum (Stowa, 2002) read:

∂B
∂t

+
∂Q
∂x

=0 (4)

and:

∂Q
∂t

+ gA
∂H
∂x

+
∂ (αQv)

∂x
+

g | Q | Q
C2AR

= αγw2cos (Φ −φ) (5)10

The equations are discretized in space and time using the four-point implicit Preiss-
mann scheme. The space between calculation points ∆x is 3000 m, the calculation
time step ∆t is 30 min. Upstream the HBV rainfall-runoff model generates the inflow
from the Alzette basin.

2.4 Salt intrusion in alluvial estuary15

An estuary is the transition zone between the river and the sea. Alluvial estuaries
have movable beds consisting of sediments of riverine and marine origin. The water
moving in the estuary can either erode the estuary bed or it can deposit sediments.
This results in a dynamic equilibrium situation. In this paper we chose the derivation of
the steady state intrusion for the tidal average (TA) model. In the one-dimensional flow20

model, the dispersion at high water slack (DHWS), varies with the tide and river flow
(see Fig. 3). DHWS

0 is the high water slack dispersion at the downstream boundary.
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The salt intrusion model was developed by Savenije (1986, 1989, 1993a,b, 2005):

S − Sf

S0 − Sf
=
( D
D0

) 1
K

(6)

DHWS

DHWS
0

=1 +
KaQf

DHWS
0 A0

(
exp

(x
a

)
− 1

)
(7)

DTA
0 =DHWS (

E/2
)
· exp

(
− E

2a

)
(8)

where K is the Van der Burgh’s coefficient, S, S0 and Sf the salinity, salinity at the es-5

tuary mouth and fresh water salinity respectively. Qf is the fresh water discharge, A0 is
the tidal average cross-sectional area at the estuary mouth and a is the cross-sectional
area convergence length. Furthermore the predictive equation for the downstream
boundary condition and the shape function apply:

DHWS
0

υ0h0
=1440

E
a

√
NR (9)10

E=H
a
h0

cos (ε) (10)

Nr=
∆ρ
ρ

gh
A0

Qf T

E0υ
2
0

(11)

With E the tidal excursion, ε the phase difference between high water (HW) and high
water slack (HWS).
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2.5 Secchi-depth

The under water light climate is an important factor for the development of the aquatic
eco-system. Growth of algae and water plants is strongly dependent on the availability
of light under water. The contribution of optical active components to adsorption and
diffusion of light is linear related to concentration of components. Total extinction of5

light for plants and algae in the most important wave length (400–700 nm) is described
by the extinction coefficient Kd . The visibility is expressed and measured as the Secci-
depth (dS ) Blom (1992):

d−1
S =d−1

S0 + βh · Eabs(380) + βa · Cchla + βd · Cdet + βm · Cmin (12)

in which:10

dS0 background Secchi-depth, Eabs(380) absorption of light dissolved material at
380 nm, Cchla concentration of cholorofyl-a, Cdet concentration of suspensive organic
matter, Cmin concentration of suspensive mineral matter. And, βh contribution of humus
acids to inverse Secchi-depth, βa contribution of chlorofyl-a to inverse Secchi-depth,
βd contribution of detritus to inverse Secchi-depth, βm contribution of floating matter to15

inverse Secchi-depth.
We assumed the concentration of suspensive organic matter Cdet is related to the

quotient of muddy river water and the saline sea water (Sf
S ). This Secchi-depth model

is implemented as a water quality model in the 1D-flow model.

3 Methodology20

The goal of this paper is to couple four models with ANNs. An integrated hydrological
model, simulating all four models, is also built in Duflow to compare the ANN results.
The calculation starts with a HBV model simulating precipitation runoff from the Alzette
basin. Starting point is a data set consisting of daily precipitation and potential evapo-
ration data. The parameters of the HBV model were roughly set to realistic values. For25
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our goal, connecting hydrological models, it was not necessary to calibrate the HBV
models to observed values. We only used the rainfall and evaporation data to produce
discharge values. This discharge time series is output of the HBV model and in the
next phase it is the input for the flow model of the river. The river disperses into an
estuarine area with tidal influence. In an estuary, salt intrusion depends on the disper-5

sion of the flow model. Dispersion is a function of geometry, tidal movement (sea level)
and fresh water inflow from the river. It is also a function of space expressed in x, the
distance from a point along the estuary to the estuary mouth x=0 m. The last model,
expressing the Secchi-depth or visibility of the water in the estuary, is modelled by a
Duflow quality model.10

3.1 Connection points

We focus on physical points in the model suitable for connection. Four ANNs models
means three connection points. The first connection point is between the HBV model
and the river model. The simulated discharge from the HBV model is discharge input to
the river model. The second connection point is the downstream discharge of the flow15

model to the upper river discharge point of the estuary. The downstream boundary
of the estuary is the sea level with saline water inflow. The third connection point is
a certain point along the estuary where the Secchi-depth model is connected. Input
is the quotient of muddy river water and marine water simulated by the salt intrusion
model.20

The connection of the ANNs happens completely outside the hydrological model.
It is totally separated from the original computer model and hence from its computer
interface. The water flows artificially between the four models.

3.2 Training

The most important step is to train the ANNs. The data set should contain enough25

physical events such as high and low flows. If this is not the case, there is the possibil-
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ity to create an artificial training data in a systematical way based on physical features
such as mean sea level, maximum flow, amplitude at estuary mouth, typical time vari-
ations etc. Many of these parameters can be subtracted from the conceptual model.
Basic statistical parameters of a data source also give shape to the input space. Se-
lecting correct data sets is important (Doan et al., 2005). In Kamp and Savenije (2006)5

the authors showed additional optimisation of the original artificial data is possible in
combination of a Genetic Algortihms (GA). The GA constructs a new training set by
selecting different subsets from the original training set resulting in better performance
of the ANN. In this paper this methodology was not applied because a daily dataset of
five years was available.10

Model coupling is only useful if the connection consist of a few variables at a conve-
nient number of locations. For example, coupling of a groundwater model with a river
model should require many connection points along the river bed. This would be im-
practical for this method. In this paper some general training rules are combined with
specific system or model knowledge from the authors of the used hydrological models.15

In future research some general applicable rules should be available for training any
physical model.

4 Simulations

4.1 Design and training

ANNs consist of an input layer, one or several hidden layers and an output layer. Each20

layer consists of one or more neurons and all neurons of two successive layers are
connected. Every connection gives a signal to the next layer multiplied by a factor.
The neurons transfer this signal with a transfer function. ANNs are described in detail
by Haykin (1999). We used two hidden layers. The first hidden layer consists of 7
or 3 neurons. The second hidden layer consists of three hidden layers. All transfer25

functions are sigmoid functions (Eq. 3) except for the output layer which has a linear
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transfer function. The trainings function is Levenberg-Marquardt back propagation. A
stepped delay line is used to simulate flow dynamics. In a stepped delay line the input
at time t until n steps in history Qt−n form the ANN’s input:

Q=


Qt−1
Qt−2

...
Qt−n

 (13)

For indication of the length of the delay line, a graph of the cross-correlation between5

input and output signals can be made. This graph gives the correlation of a delayed
input vector and the (target) output signal. Cross validation for early stopping is not
used. The average epochs or calculation runs for the training phase is 50. The error
measurement is mean squared error. All design and train parameters are optimised
and based on the authors expert knowledge. For testing the root mean squared er-10

ror (RMSE) is used. Also the Nash-Sutcliff efficiency index (R2) and the Pearson’s
r-squared statistics (RSqr) for measurement of high flows are used:

RMSE=

√∑n
i=1

(
Qi − Q̂i

)2

n
(14)

R2=1 −
∑n

i=1

(
Qi − Q̂i

)2∑n
i=1

(
Qi − Q̄i

)2
(15)

RSqr =
[ ∑n

i=1

(
Qi − Q̄i

)
·
(
Q̂i − Q̃i

)√∑n
i=1

(
Qi − Q̄i

)2 ·
∑n

i=1

(
Q̂i − Q̃i

)2

]2

(16)15

where Qi is the observed value, Q̂i is the modelled value and Q̄i is the mean of the
observed data and Q̃i is the mean of the modelled data.
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4.2 HBV rainfall-runoff model

For the Alzette basin (Pfister et al., 2005) daily time series are available for five years
(1996–2001) for precipitation and potential evaporation (see Fig. 1). A conceptual
HBV model was available with calibrated parameters. From the cross-correlation graph
of precipitation and the potential evaporation, a history of six delayed time steps is5

sufficient. For training this was the best fit for the input dataset. Both the precipitation
and potential evaporation were delayed for six days. However, training and testing the
ANN showed a more basic problem. The train set should contain enough high flows.
In the training set a few high floods occurred. One extreme high flood in the test set did
not even occur in the training data set. This resulted in a poor prediction of high flows10

and a RSQR of only 0.66 (see Fig. 6). Another difficulty for neural networks is the fact
that a HBV model has different model states. The response in wet situations is much
quicker than in dry periods, which are difficult training conditions.

Additional attention has to be payed to different time scales between the models.
The HBV model for example calculates daily discharge values, while the flow model15

has a time step of 30 min. Another problem was connecting the HBV model into the
integrated Duflow model. While the standard precipitation runoff model of Duflow had
different parameters and a different implementation, it was not possible to use the
standard RAM-object. The HBV model results were connected as flow boundaries.

4.3 River model in 1D-channel flow20

The largest river section connects the inflow from the HBV model to the inflow of the
estuary and has an average slope (I) of 1.2×10−4 m−1. The distance between the
input and output point is 336 km. The cross sectional profile is 20 m wide (B), rectan-
gular and uniform with no flooding area’s for water storage (Bs). The discharge (Q)
is 13 m3/s at low flow, 50 m3/s at high flow and 100–150 m3/s in extreme situations.25

The water depth (h) is 1.6 m and the (steady state) water velocity (v̄) at the top of
the high water wave (∂h/∂t=0) can be described as a steady state flow according to
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Manning-equation:

v̄ =
1
n
h2/3

√
I (17)

If we assume Q=v̄Bsh and substitute it in the law of conservation (Eq. 4), the high
water wave velocity is (Savenije, 2001):

c =
5
3

Bs

B
1
n
h2/3

√
I =

5
3

Bs

B
v̄ (18)5

With n=0.025 (Manning) for clean, straight and uniform river bed, we find a theoret-
ical c=1.03 m/s, and from the 1D-flow simulation model we find a wave celerity of
c=∆x

∆t=1.00 m/s. A river flood upstream arrives 3 days and 20 h later in the down-
stream area (see Fig. 2). This is important for the stepped delay line used for training
(Eq. 13). The input fitted quite well and resulted in RMSE=4.4 m3/s and an efficiency10

of R2=0.92 (see Fig. 6). The results are good because the hydro graph was symmetric
and showed little deformation. In situations of large water storage and non-uniform
cross-sectional profile this is not the case.

The time step of the HBV model is days, while the time step of the dynamic flow
model is half an hour. The HBV model provides one constant value for a whole day. To15

prevent a stepped time series, the input of the flow model are smoothed.

4.4 Salt intrusion in alluvial estuary

The upstream boundary of the alluvial estuary is the fresh river inflow. Downstream
the MSL is 2.0 m with an average amplitude of 1.25 m. The geometric profile is wide
at the estuary mouth and small at the river mouth. The width varies as an exponential20

function with distance. The bottom level is constant (5.0 m). These are conditions for
alluvial estuaries that fit the model as described by Savenije (Sect. 2.4). The output
of the salt intrusion model is the salinity at a point 120 km upstream from the estuary
mouth. In this point the salinity is influenced by both the fresh river discharge and the
tidal movement at the estuary mouth (see Fig. 3).25
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The first process, the tidal movement (see Fig. 5), has a time period of one day. The
variations of the discharge includes several days and is a much slower process (see
Fig. 6). It is important to understand that it is difficult for one ANN to simulate both
time scales in one training. To improve the performance the moving average value of
discharge is used for input. This gives better results but introduces a larger error in5

the starting period when the model has to build a “history”. A technical problem was
the implementation of the dispersion. The 1D-flow model dispersion was not a direct
function of the sea-level and river discharge. Extra calculation of dispersion depending
on time varying water levels and river discharges were performed. Training the ANN
was difficult and gave poor results. Introducing a moving history was necessary but did10

not give satisfying predictions. Although both the sea level and river discharge have
effect on salinity, it is difficult to separate these two processes.

4.5 Secchi-depth

The ecchi-depth is an indication for the light penetration under water. This value is in
our model directly derived from the quotient of river and sea water. We assumed this15

is an indication of dissolved matter in the water column. Except for salinity, all other
parameters are assumed constant and there are no external variables distinguished in
this model. If the salinity is high, the assumption is that there is relatively much sea
water hence less muddy river water. In that situation the concentration of dissolved
material is low and the visibility is high. This results in a Secchi-depth which is propor-20

tional with salinity. Training an ANN on proportional variables with no time lags results
in good results. This was also the case in our model with R2=0.99 (see Fig. 6).

4.6 Model coupling and results

Models with the same input and output variables, for example water levels or dis-
charges can be connected. In this paper we used a cascading model coupling. The25

line-up of the models is (1) the rainfall-runoff model producing a discharge, (2) the 1-D-
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flow model for the river in, (3) the salt intrusion model and (4) the Secchi-depth model.
The HBV model produces a discharge for the river model, the river model simulates
discharge for the estuary and the estuary model provides salinity for the Secchi-depth
model.

In general the ANN are good input/output fitters (see Table 1). However, the predic-5

tions were not very accurate due to several problems (see Fig. 7). We performed an
extra calculation and disabled the short-term processes by focusing on maximum daily
salinity values. However this resulted in no better performance (see Fig. 8 and Table 1
last row). The problem with the HBV is the time delays and different system responses.
River flow could be simulated well because the river had uniform cross-sectional area’s10

and no flooding area’s. The ANN of the estuary could hardly distinguish two processes
with different time periods. The Secchi-depth was proportional to the salinity without
any time delay and gave perfect results. The final, coupled model performs poorly. All
errors are accumulated in a cascading modelling.

5 Conclusions15

In this research ANNs are used to couple four hydrological models. For training and
testing five years of daily precipitation and potential evaporation are used for training
and testing. The models are coupled in a cascading model and compared to an inte-
grated conceptual model. We found that it is possible to use ANNs for model coupling.
The ANNs were capable to simulate the output of the different model components. The20

individual ANNs were tested and three of the four resulted in good results. However, the
final model results are as accurate as the weakest link in the model chain. In this model
simulation the salt intrusion model was not accurate enough. The ANNs could simulate
the tidal movement (short term) but simulated at the same time the salt-intrusion (long
term) inaccurately. In the next paper we will focus on a method to separate the short25

and long term processes for the salt-intrusion in an estuary.
We can conclude that model coupling as such has proven to be feasible and efficient,
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however the overall accuracy of four coupled models was not sufficient due to the poor
performance of the salt-intrusion model.
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Table 1. Simulation results.

Model RMSE R2 RSQR RMSE coupled

HBV 11.5 m3/s 0.51 0.66 11.4 m3/s
River flow 4.4 m3/s 0.92 0.93 13.7 m3/s
Estuary 837 mg/l 0.38 0.62 1424 mg/l
Secchi-depth 0.004 m 0.99 0.99 0.636 m
Max.Salinity 1068 mg/l 0.25 0.61 1663 mg/l
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Fig. 1. Alzette basin.
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Fig. 2. 1-D-flow model.
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Fig. 3. Salinity in estuary.
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Fig. 4. Dispersion in estuary.
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Fig. 5. Tidal movement in one point (SCH00004).
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Fig. 6. Test results.
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Fig. 7. Results connected models.
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Fig. 8. Results connected models trained on maximum salinity.
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